Extensions 1→N→G→Q→1 with N=D4xC32 and Q=C4

Direct product G=NxQ with N=D4xC32 and Q=C4
dρLabelID
D4xC3xC12144D4xC3xC12288,815

Semidirect products G=N:Q with N=D4xC32 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4xC32):1C4 = C3:S3.5D8φ: C4/C1C4 ⊆ Out D4xC32248+(D4xC3^2):1C4288,430
(D4xC32):2C4 = C32:6C4wrC2φ: C4/C1C4 ⊆ Out D4xC32488-(D4xC3^2):2C4288,431
(D4xC32):3C4 = D4xC32:C4φ: C4/C1C4 ⊆ Out D4xC32248+(D4xC3^2):3C4288,936
(D4xC32):4C4 = C3xD4:Dic3φ: C4/C2C2 ⊆ Out D4xC3248(D4xC3^2):4C4288,266
(D4xC32):5C4 = C3xQ8:3Dic3φ: C4/C2C2 ⊆ Out D4xC32484(D4xC3^2):5C4288,271
(D4xC32):6C4 = C62.116D4φ: C4/C2C2 ⊆ Out D4xC32144(D4xC3^2):6C4288,307
(D4xC32):7C4 = C62.39D4φ: C4/C2C2 ⊆ Out D4xC3272(D4xC3^2):7C4288,312
(D4xC32):8C4 = C3xD4xDic3φ: C4/C2C2 ⊆ Out D4xC3248(D4xC3^2):8C4288,705
(D4xC32):9C4 = D4xC3:Dic3φ: C4/C2C2 ⊆ Out D4xC32144(D4xC3^2):9C4288,791
(D4xC32):10C4 = C32xD4:C4φ: C4/C2C2 ⊆ Out D4xC32144(D4xC3^2):10C4288,320
(D4xC32):11C4 = C32xC4wrC2φ: C4/C2C2 ⊆ Out D4xC3272(D4xC3^2):11C4288,322

Non-split extensions G=N.Q with N=D4xC32 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4xC32).C4 = C62.(C2xC4)φ: C4/C1C4 ⊆ Out D4xC32488-(D4xC3^2).C4288,935
(D4xC32).2C4 = C3xD4.Dic3φ: C4/C2C2 ⊆ Out D4xC32484(D4xC3^2).2C4288,719
(D4xC32).3C4 = D4.(C3:Dic3)φ: C4/C2C2 ⊆ Out D4xC32144(D4xC3^2).3C4288,805
(D4xC32).4C4 = C32xC8oD4φ: trivial image144(D4xC3^2).4C4288,828

׿
x
:
Z
F
o
wr
Q
<